
Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a

transition state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 8819

(http://iopscience.iop.org/0305-4470/33/48/317)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/48
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 8819–8833. Printed in the UK PII: S0305-4470(00)15294-1

Kinetic theory of a diatomic gas with reactions of dissociation
and recombination through a transition state

M Groppi†, A Rossani‡ and G Spiga†
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Abstract. Extended kinetic equations, according to the scattering kernel formulation of the
Boltzmann equation, are derived for a chemical reaction of dissociation and recombination in
the frame of the transition-state theory. Conservation laws and moment equations are discussed,
and, in the spontaneous asymptotic limit induced by the transition species, collision equilibria
are determined to leading order. In the spirit of the stationary-state approximation, a closed set
of fluid-dynamic equations of the Euler type are then obtained for the main macroscopic fields.
Preliminary numerical results are finally presented and briefly commented on.

1. Introduction

The kinetic theory of chemically reacting gases started in the 1940s [1], and there exists a
large literature about chemically reacting rarefied flows. We may quote for instance [2,3], just
to mention some of the most significant contributions from pioneering times. However, such
a literature is mainly concerned with numerical results and applications. Only very recently
Rossani and Spiga [4] gave a more explicit derivation of kinetic equations with chemical
reactions, and, from a mathematical point of view, were able to characterize completely
equilibrium distributions and to prove an H-theorem for them.

On the other hand, [4] deals with bimolecular reversible reactions only, a quite special case
in the world of applications. It is very well known, for example, that the main chemical reactions
occurring in the air include recombination/dissociation events as an essential ingredient [5]. It is
just this kind of reaction that we shall focus on here. A formal description, at a mesoscopic level,
of a diatomic gas with reactions of recombination and dissociation is available in [6]. In such
a model, recombination occurs through a three-body collision. However, many authors [5, 7]
point out that recombination occurs through a preliminary two-body collision, according to
the transition-state theory [8]. To the best of our knowledge, the only kinetic-like approach
along this line available in the literature is [9], where Yoshizawa constructs a BGK model
for a diatomic gas with recombination reactions through a transition state. Unfortunately,
dissociation reactions are neglected in that paper.

In this paper we propose a kinetic model, at the Boltzmann level, for the mesoscopic
description of a diatomic gas with both reactions of dissociation and of recombination through
a transition state. We consider the diatomic gas as a mixture of three interacting populations:
atoms A (mass m), stable molecules A2 and unstable molecules A∗

2, to be labelled in the
following by the indices 1, 2 and 3, respectively. A detailed discussion on the formation of
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an unstable molecule can be found in [7]. It turns out that such an event is possible when
the kinetic energy of relative motion falls between a lower bound Elb and an upper bound
Eub. These values originate from the study of the atom–atom potentials for both the unbound
and the bound state. However, in view of a construction of a mesoscopic model, all this
microscopic information is accounted for by means of the relevant cross sections. Moreover,
for the purpose of a correct energy balance, it suffices to assume that stable and unstable
molecules are endowed with their own internal energies, which are denoted, respectively, by
−Q and E, where Q is a fixed positive quantity, while E is a continuous variable ranging on
the real axis. The present model neglects rotational internal energy, so that −Q is intended
to be due to chemical links only, while E is the sum of chemical link plus vibrational energy.
One of the key points of the model is that the unstable molecule plays the role of a transition
state [8,9]. It is created by atom–atom recombination reactions only, and does not survive any
interaction. More precisely, one assumes that the mean lifetime (the average time between
creation and the first, and last, interaction) of an unstable molecule is very short in comparison
to the other reaction times [5]. This implies that 3–3 interactions can be neglected, and that,
from a mathematical point of view, we have to deal necessarily with a singular perturbation
problem.

This paper is organized as follows. After analysing the recombination/dissociation
reaction and discussing the properties of the interaction probabilities, we introduce a system of
Boltzmann equations for the particle distribution functions, in order to describe the evolution of
the three interacting populations at a kinetic level by means of the various collision frequencies
and collision kernels. In particular, conservation laws for mass, momentum and total (kinetic
plus internal) energy are recognized, and the relevant macroscopic conservation equations
are obtained. Then, the separate balance equations for each kind of particle, as well as for
kinetic energy, are derived. Based on the stationary-state approximation [8], a closure for
the moment equations above is proposed, which allows a fluid-dynamic description of the
considered gas mixture in terms of six macroscopic fields. The approximate set of partial
differential equations is obtained by an asymptotic limit when the appropriate collision times
tend to zero, and describes the chemical kinetics of the reaction at the Euler level. The
procedure goes through the determination of asymptotic collision equilibria, which satisfy
a sort of mass action law. Finally, some simple numerical results are presented in order to
illustrate the relaxation to equilibrium starting from any given initial condition and the role
played by the small parameter.

2. Recombination/dissociation reactions and kinetic equations

Recombination in our model occurs in two steps:

(R1) A + A → A∗
2

(R2) A∗
2 + P → A2 + P

where, in what follows, P = A,A2. The kinetic energy of the relative motion ε11 = (1/4)mV 2
11

(V is the relative speed) gives the internal energy E of 3. According to the adopted model,
reaction (R1) occurs if E belongs to the allowed energy range Elb < E < Eub, which
determines upper and lower thresholds for the relative speed in order to achieve the transition
state. If such conditions are not fulfilled, only the elastic scattering event

(E1) A + A → A + A

occurs. Otherwise both events (R1) and (E1) are possible. The second step (R2) is an inelastic
scattering, which completes the recombination process by de-excitation of A∗

2 (exothermic
process).
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Dissociation occurs via two possible reactions:

(D1) A2 + P → 2A + P

(D2) A∗
2 + P → 2A + P.

Total energy conservation imposes that the event (D1) occurs if the kinetic energy of the relative
motion ε2p = (1/2)µ2pV

2
2p (where p = 1, 2 for P = A,A2, and µ2p = 2pm/(2 + p)) of the

pair (2, p) is such that ε2p > Q, which determines a threshold to be overcome by the relative
speed (endothermic process). If conditions for occurrence of (D1) are not fulfilled, only the
elastic scattering

(E2) A2 + P → A2 + P

takes place. Otherwise both events (D1) and (E2) are possible. The reaction (D2) is an
exothermic process, and it occurs, with different probabilities, together with the inelastic
scattering (R2).

All elastic scattering collisions (E1) and (E2) may be described by the usual methods of
kinetic theory [10], and we shall not enter into the details of the relevant collision terms. A
similar treatment would be in order, in the frame of extended kinetic theory [11], for the inelastic
scattering process (R2). However, we will describe such collision in terms of the equivalent
scattering kernel formulation of the Boltzmann equation [12]. If (v′,w′) and (v,w) denote
the ordered velocity pairs before and after collision, momentum and energy conservation read

2v′ + pw′ = 2v + pw

mv′2 + E + (1/2)pmw′2 = mv2 − Q + (1/2)pmw2.
(1)

All requirements are modelled by the microscopic collision frequencies gi3p = gip3 (relative

speed multiplied by cross sections) and by the scattering probability distributions �2,i
3p and

�
p,i

p3 , where the superscript i stands for inelastic. For readers who are not familiar with such a

formalism, we recall that, for instance, �2,i
3p(v

′, E; w′ → v) represents the probability density
that the outcoming particle 2 attains velocity v as a result of a de-excitation collision of a
particle 3, with velocity v′ and internal energy E, against a particle P, with velocity w′. The
explicit expressions of the scattering kernels, involving necessarily also delta functions, may
be deduced from [13], and satisfy all obvious indistinguishability constraints, in particular
�

2,i
32 (v

′, E; w′ → v) = �
2,i
23 (w

′; v′, E → v). It suffices to report on their conservation
properties:∫

�
2,i
3p(v

′, E; w′ → v) dv = 1
∫

�
p,i

p3 (v
′; w′, E → v)dv = 1∫

[2v�2,i
3p(v

′, E; w′ → v) + pv�
p,i

p3 (w
′; v′, E → v)] dv = 2v′ + pw′

∫ [
(mv2 − Q)�

2,i
3p(v

′, E; w′ → v)

+
pm

2
v2�

3,i
p3(w

′; v′, E → v)

]
dv = mv′2 + E +

pm

2
w′2

(2)

where here and below it is implicitly understood that velocity vectors range all over R
3, internal

energy E between Elb and Eub, and the same occurs for the relevant integrations. Of course,
domains of integration might be further restricted by other thresholds contributed by cross
sections present in the integrand.

The same probabilistic formalism will then be adopted for all other considered interactions.
In the recombination process (R1) the collision frequency gr11 is affected by the constraints
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explained above and depends only on the relative speed V = |v′ − w′|, while the collision
kernel is explicitly given by

�
3,r
11 (v

′; w′ → v, E) = δ( 1
2 (v

′ + w′) − v)δ( 1
4m(v

′ − w′)2 − E) (3)

where δ is Dirac’s delta distribution. Conservation properties then follow:∫
dE

∫
�

3,r
11 (v

′; w′ → v, E) dv = 1∫
dE

∫
2v�3,r

11 (v
′; w′ → v, E) dv = v′ + w′

∫
dE

∫
(mv2 + E)�

3,r
11 (v

′,w′ → v, E) dv = (1/2)mv′2 + (1/2)mw′2.

(4)

As regards the dissociation reaction (D1), we shift all microscopic details to appendix A,
to which we refer also for the proofs of the statements below. We shall resort to collision
frequencies gd2p = gdp2 and to the integrated probability distributions �

1,d
2p and �

p,d

p2 , with

�
1,d
21 (v

′,w′ → v) = �
1,d
12 (w

′, v′ → v), and conservation properties∫
�

1,d
2p (v

′,w′ → v) dv =
∫

�
p,d

p2 (v
′,w′ → v) dv = 1∫

[2v�1,d
2p (v

′,w′ → v) + pv�
p,d

p2 (w
′, v′ → v)] dv = 2v′ + pw′

∫ [
mv2�

1,d
2p (v

′,w′ → v) +
pm

2
v2�

p,d

p2 (w
′, v′ → v)

]
dv = mv′2 − Q +

pm

2
w′2.

(5)

The same as above applies, mutatis mutandis, to the dissociation reaction (D2). The
collision frequencies gd3p = gdp3 may depend on the internal energy of species 3 in addition
to the relative speed V = |v′ − w′|. One can define again integrated probability distributions
(see appendix A) �1,d

3p and �
p,d

p3 , with �
1,d
31 (v

′, E; w′ → v) = �
1,d
13 (w

′; v′, E → v), and
conservation properties∫

�
1,d
3p (v

′, E; w′ → v) dv =
∫

�
p,d

p3 (v
′; w′, E → v) dv = 1∫

[2v�1,d
3p (v

′, E; w′ → v) + pv�
p,d

p3 (w
′; v′, E → v)] dv = 2v′ + pw′

∫ [
mv2�

1,d
3p (v

′, E; w′ → v) +
pm

2
v2�

p,d

p3 (w
′; v′, E → v)

]
dv = mv′2 + E +

pm

2
w′2.

(6)

For a description at a mesoscopic level of the present model, we resort to the usual
distribution functions f1(v) and f2(v) for atoms 1 and molecules 2, respectively, and to a
distribution function ϕ3(v, E) for excited molecules 3, which exhibit the additional kinetic
variableE. Explicit dependence on (x, t)will not be shown here, in order to simplify notation.
We might define the following (integer) energy moments of such distribution function:

M3�(v) =
∫

ϕ3(v, E)E
� dE. (7)

In particular, M30(v) = f3(v) is the usual velocity distribution function for particles 3. Under
the usual hypotheses of validity of the Boltzmann equation [10], by resorting to its scattering
kernel formulation [12], we can write down the following system of coupled kinetic equations
governing the evolution of f1, f2 and ϕ3

∂f1

∂t
+ v · ∂f1

∂x
= Q11(f1, f2) + Q12(f1, f2) + J1(f1, f2, ϕ3)

∂f2

∂t
+ v · ∂f2

∂x
= Q21(f2, f1) + Q22(f2, f2) + J2(f1, f2, ϕ3)

∂ϕ3

∂t
+ v · ∂ϕ3

∂x
= J3(f1, f2, ϕ3)

(8)
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where Qk� is the usual [10] elastic collision integral and Jk is the chemical collision term
for particles k, including the proper recombination, inelastic scattering and dissociation
contributions, whose explicit expression is given in appendix B. Indistinguishability of particles
has been taken into account by the relevant symmetry properties of the scattering kernels.

3. Conservation and moment equations

The conservation properties established in (2) and (4)–(6) lead, after some algebra, to the
conservation laws, of clear physical meaning:∫

J1(v) dv + 2
∫

J2(v) dv + 2
∫ ∫

J3(v, E) dv dE = 0∫
vJ1(v) dv + 2

∫
vJ2(v) dv + 2

∫ ∫
vJ3(v, E) dv dE = 0∫

1
2mv

2J1(v) dv +
∫
(mv2 − Q)J2(v) dv +

∫ ∫
(mv2 + E)J3(v, E) dv dE = 0.

(9)

Elastic collision terms satisfy in turn, as well known,∫
Qk�(v) dv = 0 ∀k, �

∫
vQkk(v) dv = 0 ∀k

∫
v2Qkk(v) dv = 0 ∀k∫

v(Q12 + 2Q21) dv = 0
∫

v2(Q12 + 2Q21) dv = 0.
(10)

The five scalar strings (1, 2, 2), (v, 2v, 2v), (mv2/2,mv2 − Q,mv2 + E), representing the
total number of atoms, total momentum (per unit mass) and total energy (kinetic plus internal),
respectively, are then collision invariants for the considered mixture. We can draw from this
immediate consequences at the macroscopic level.

Integration and summation of the kinetic equations (8) after multiplication by the string
(m, 2m, 2m) yields in fact the mass conservation equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (11)

where mass density ρ and drift velocity u are defined in appendix C, together with all moments
of the distribution functions introduced below.

The string (mv, 2mv, 2mv) yields the momentum conservation equation

∂

∂t
(ρu) + ∇ · (ρu ⊗ u + P ) = 0 (12)

where P is the pressure tensor.
The string (mv2/2,mv2−Q,mv2+E) yields finally the total energy conservation equation

∂E
∂t

+ ∇ · [(EI + P ) · u + q] = 0 (13)

where I is the unit tensor, and energy density E and heat flux q are given by

E = (1/2)ρu2 + Eth + Eint (14)

and

q = qth + qint (15)

with thermal and internal contributions defined again in appendix C.
These five scalar partial differential equations are of course exact but not closed, since they

involve a much larger number of moments of the distribution functions. Some more detailed
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information may be achieved by partial integrations, as shown below, at the price that collision
contributions do not necessarily cancel out.

In fact, simple integration of the three kinetic equations give balance equations for the
number of particles in each species. They read as

∂n�

∂t
+ ∇ · (n�u�) = S� � = 1, 2, 3 (16)

with appearance of collision terms S� listed in appendix D.
The string (mv2/2,mv2,mv2) yields the kinetic energy balance equation

∂

∂t
(Eth + (1/2)ρu2) + ∇ · {[(Eth + (1/2)ρu2)I + P ] · u + qth} = Sth (17)

where Sth is also given in appendix D.
The moment equations (12), (16), (17) are again exact but not closed, and the source terms

S� and Sth are complicated integrals of the unknown distribution functions.
In the next section we propose a closure approach for these moment equations, in order

to achieve an approximate fluid-dynamic description of the gas mixture we deal with. Such
a procedure, at a mesoscopic level, basically follows the philosophy of the stationary-state
approximation, which is a popular approach to the chemical kinetics of complex reactions [5,8].

4. Fluid-dynamic equations

Suppose that, consistently with our model, all frequencies gα�3 and all elastic frequencies gek�
are affected, upon adimensionalization, by a factor 1/ε, where ε is a smallness parameter.
This indeed occurs when collision times relevant to the excited species, together with elastic
collision times, are much shorter than all other typical relaxation times. The kinetic equations
now read

∂f1

∂t
+ v · ∂f1

∂x
= 1

ε
(Q11 + Q12) + J ×

1 +
1

ε
J ∗

1

∂f2

∂t
+ v · ∂f2

∂x
= 1

ε
(Q21 + Q22) + J ×

2 +
1

ε
J ∗

2

∂ϕ3

∂t
+ v · ∂ϕ3

∂x
= J ×

3 +
1

ε
J ∗

3

(18)

where J ∗
k is the part of Jk which involves ϕ3, while J ×

k is the part of Jk which does
not. As typical in kinetic theory, in order to look for the asymptotic (hydrodynamic) limit,
all distribution functions, and consequently all collision integrals, are expanded in non-
negative powers of ε. If one looks for collision equilibria, the last equation gives at once
J ∗

3(0) = 0 �⇒ ϕ
(0)
3 = 0 and J ×

3(0) + J ∗
3(1) = 0. Since ϕ(0)

3 = 0 �⇒ J ∗
�(0) = 0 (� = 1, 2), the

first two equations give, respectively,

Q(0)
11 + Q(0)

12 = 0 Q(0)
12 + Q(0)

22 = 0 (19)

whose exact solution f (0) is explicitly known in terms of Maxwellian distributions [10]. So,
if n�, u12 and T12 denote arbitrary parameters (functions of x and t), the zero-order collision
equilibrium for atoms and molecules is given by f� = n�M�(|v − u12|, T12), where M� is the
normalized Maxwellian

M�(v, θ) =
( m�

2πKθ

)3/2
exp

(
− m�

2Kθ
v2

)
. (20)

Now, again to leading order, and in dimensional form, from J ×
3(0) + J ∗

3(1) = 0, we obtain the
collision equilibrium for the excited species

ϕ3(v, E) = ψ3(|v − u12|, E)χ(E) (21)
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with

ψ3(v, E) = n2
1M3(v, T12)∫

[n1M1(w, T12)g
t
13(|v − w|, E) + n2M2(w, T12)g

t
23(|v − w|, E)] dw

χ(E) =
(

E

π(kT12)3

)1/2

2gr11

(
2
√
E/m

)
exp

(
− E

kT12

) (22)

where ψ3 depends on E only through the collision frequencies gt�3 = gi�3 +gd�3. If we introduce
the effective (averaged) collision frequencies

ναk�(T12) =
∫ ∫

gαk�(|v − w|)Mk(v, T12)M�(w, T12) dv dw k, � �= 3 (23)

it is not difficult to prove that the shape function χ satisfies the normalization condition∫
χ(E) dE = νr11(T12). (24)

The equilibrium ϕ3 does not introduce new parameters with respect to f1 and f2. It is
remarkable that it depends on v only through |v − u12|, so we have

u3 = u12 �⇒ u = u12 P3 = 2m
∫ ∫

v ⊗ vψ3(v, E)χ(E) dv dE = P3I (25)

where

P3 = P3(n1, n2, T12) = 2m

3

∫ ∫
v2ψ3(v, E)χ(E) dv dE = n3KT3 (26)

and

n3 = n3(n1, n2, T12) =
∫ ∫

ψ3(v, E)χ(E) dv dE. (27)

The six free parameters defining f1, f2 and ϕ3 can be identified with the densities n1 and n2,
the components of the drift velocity u of the whole mixture, and the temperature T12 common
to particles 1 and 2. The sought approximate (asymptotic with respect to the small parameter)
closure of the moment equations is now achieved by using the previous collision equilibria in
order to express all integrals of the distribution functions. Retaining only leading-order terms,
since also qth = 0, one is left, after some algebra, with

∂n1

∂t
+ ∇ · (n1u) = −2Ŝ2

∂n2

∂t
+ ∇ · (n2u) = Ŝ2

∂

∂t
(ρ̂u) + ∇ · (ρ̂u ⊗ u + (n1 + n2)KT12I) = 0

∂

∂t
[(3/2)(n1 + n2)KT12 + (1/2)ρ̂u2] + ∇ · [((5/2)(n1 + n2)KT12 + (1/2)ρ̂u2)u] = QŜ2

(28)

where ρ̂ = m(n1 + 2n2) and

Ŝ2 = νi13(n1, n2, T12)n1n3 + νi23(n1, n2, T12)n2n3 − [νd12(T12)n1n2 + νd22(T12)n
2
2] (29)

with

να�3(n1, n2, T12) = 1

n3

∫ ∫ ∫
gα�3(|v − w|, E)M�(v, T12)ψ3(w,E)χ(E) dv dw dE. (30)

The macroscopic system (28) is self-consistent, even though partial density n3 and effective
collision frequencies ν may be complicated functions of its unknown fields. It describes
evolution of the chemical reaction at an hydrodynamic level, after the short initial transient
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dominated by fast processes, and represents fluid-dynamic equations of Euler type. It
also shares with the mesoscopic system (8) the existence of five conservation equations
(three from momentum equations, and the other two by elimination of Ŝ2, yielding mass
and energy conservation) and occurrence of collision terms, represented here by the single
quantity Ŝ2, which accounts for all non-conservative (inelastic, dissociation and recombination)
interactions.

The further assumption that the collision frequencies gt�3 are constants (to be labelled by
νt�3) would lead to a much simpler model. In fact, we have in this case

ϕ3(v, E) = n3M3(|v − u|, T12)χ(E)/ν
r
11(T12) (31)

which implies

T3 = T12 �⇒ T = T12 (32)

and n3 can be cast in the explicit form

n3 = νr11(T )n
2
1

νt13n1 + νt23n2
. (33)

Then P3 = n3KT , P = nKT I and the functions νi�3 may depend at most only on T (they
do not, when gi�3 are constant). ‘Collision’ equilibria for the fluid-dynamic equations (28) are
given by the requirement Ŝ2 = 0, that now reads simply as

νd22(T )ν
t
23n

3
2 + [νd12(T )ν

t
23 + νd22(T )ν

t
13]n1n

2
2

+[νd12(T )ν
t
13 − νr11(T )ν

i
23(T )]n

2
1n2 − νr11(T )ν

i
13(T )n

3
1 = 0. (34)

The existence and uniqueness of a real positive root for the ratio n2/n1 is easily proven on
the basis of the sign of coefficients in this cubic equation. Equations (33) and (34) play thus
the role of the mass action law of chemical equilibrium, since their unique physical solution
determines the ratios n2/n1 and n3/n1 in terms of temperature T .

5. Numerical experiments

For a numerical illustration of the proposed model, we report here preliminarily on the closed
macroscopic set of equations for the densities nk , k = 1, 2, 3, which is in order in space
homogeneous conditions when, in addition to all previous assumptions, effective collision
frequencies are constant (isothermic reaction in a thermal bath). Actual computations at a
kinetic level, either by discretization [14] or by multigroup methods [15], are planned as future
work. In this situation we may take u = 0 without loss of generality, and, from (16), the
three-dimensional dynamical system

ṅ1 = −2νr11n
2
1 + 2νd12n1n2 + 2νd22n

2
2 + 2νd13n1n3 + 2νd23n2n3

ṅ2 = −νd12n1n2 − νd22n
2
2 + νi13n1n3 + νi23n2n3

ṅ3 = −νt13n1n3 − νt23n2n3 + νr11n
2
1

(35)

is left, with first integral n1 + 2n2 + 2n3 = N , where the constant N is determined by initial
conditions. Notice that (35) is itself a singular perturbation problem, since all νk� with � < 3
have to be taken much smaller than νk3. Fixed points of the dynamical system are the zeros of
the vector field on the right-hand sides, and the relevant equations coincide exactly with the
mass action law (33) and (34) discussed at the end of the previous section, with fixed T . For
n1 �= 0 the ratios a = n2/n1 and b = n3/n1 are then uniquely determined. For n1 = 0 we
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have the additional equilibrium n2 = 0 with n3 arbitrary. Given the initial data, elimination of
n3 yields

ṅ1 = νd13Nn1 + νd23Nn2 − (νd13 + 2νr11)n
2
1 + (2νd12 − 2νd13 − νd23)n1n2 + (2νd22 − 2νd23)n

2
2

ṅ2 = νi13
N

2
n1 + νi23

N

2
n2 − 1

2
νi13n

2
1 −

(
νd12 + νi13 +

1

2
νi23

)
n1n2 − (νd22 + νi23)n

2
2

(36)

whose admissible phase space is the triangle 0 � n1 � N , 0 � n2 � N , 0 � n1 + 2n2 � N

in the (n1, n2) plane. It is easy to check that there is a unique internal fixed point compatible
with the assigned data, namely

n1 = N

1 + 2a + 2b
n2 = aN

1 + 2a + 2b
(37)

with n3 = bN/(1 + 2a + 2b), plus the boundary equilibrium point (0, 0), with n3 = N . For the
latter, standard techniques show that it is unstable, whereas, in all the numerical experiments
that have been performed, the former has turned out to be an asymptotically stable equilibrium
(with real negative eigenvalues), and a global attractor for any initial point, except the origin,
in the phase space.

Examples of the general trend, describing relaxation to the internal equilibrium, are shown
in figures 1–4. Quantities are measured in arbitrary units, and numerical values have been
selected in order to fulfill the physical requirements of the previous sections. In all figures
shown below the collision frequencies νik� and νdk� with � = 3 have been taken equal to unity,
and N has been set equal to 10. In figure 1 all other collision frequencies are equal to 0.05. It
illustrates a typical phase diagram, with all phase trajectories converging to the unique internal
fixed point (37), given now by (5.6540, 2.0695). Though ε turns out to be not particularly
small in this case, the asymptotic predictions of the previous section clearly show up. In fact,
the solution undergoes a fast initial transient, approaching the manifold corresponding to (33),
namely the curve of the phase space

(νt13 + 2νr11)n
2
1 + 2νt23n

2
2 + (2νt13 + νt23)n1n2 − νt13Nn1 − νt23Nn2 = 0 (38)

which is marked by a dashed line in the figure. It is a conic (in this case, a hyperbola), which the
fixed point belongs to, and whose branch of interest in the phase space runs close to the straight
borderline n1 + 2n2 = N , characterized by n3 = 0. Then, the evolution occurs on a slower
time scale, follows essentially the manifold (38) and is just governed by the specialization
of the macroscopic equations (28) to the present simpler context, leading eventually to the
equilibrium (37). Indeed, the conic can hardly be seen on the figure, being almost entirely
hidden by the asymptotic part of all phase trajectories. The distance between the hyperbola and
the dotted line n3 = 0, though small, is instead visible, but just because of the relatively high
value of ε. Pushing further the asymptotic limit would make the two curves indistinguishable,
and n3 vanishingly small during the whole fluid-dynamic evolution.

The initial layer is apparent in figure 2, where, for the same values of parameters as
in figure 1, n1 and n2 are plotted versus time, with n3 given by the dashed–dotted curve. It
represents the particular solution starting from the initial point (0, 1), with the dashed curves to
indicate the continuation backwards, into the initial layer, of the asymptotic regime valid in the
bulk region. Of course, an analytical treatment of the initial layer, in order to determine
the effective initial conditions for the bulk solution, could be performed in the frame of
singular perturbations [16], but the problem will not be considered here. The initial layer
effect is much less apparent in figure 3, for the simple reason that, with all other parameters
kept equal to the previous ones, the initial point (10, 0) has been chosen very close to the
asymptotic manifold (38). In general, notice that the densities versus time are not always
monotonic. However, oscillating trends generated by nonreal eigenvalues of the Jacobian
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Figure 1. Phase portrait in the n1–n2 plane for the parameter values given in the text.
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Figure 2. Densities versus time when initial conditions correspond to the point (0, 1).

matrix are excluded in the bulk evolution, which is, in practice, one dimensional. For the
sake of completeness, we report finally in figure 4 on the phase diagram when the parameters
of figure 1 are changed only in that νr11 takes the value 0.5. Here, the dashed–dotted line
separates the two regions with positive (bottom) and negative (top) divergence. Relaxation
to the unique internal equilibrium still occurs (indeed, the fixed point belongs to a compact
positively invariant region with negative divergence), but now the asymptotic approach of
section 4 becomes questionable, as clearly indicated by the sensible deviation of the phase
trajectories with respect to the curve (38) (an ellipse now, marked by a dashed curve), and by
the analogous deviation of the latter with respect to the manifold n3 = 0.
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Figure 3. Densities versus time when initial conditions correspond to the point (10, 0).

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n1

n2

Figure 4. Phase portrait when νr11 is increased from 0.05 to 0.5.

6. Conclusions

We have proposed a kinetic model for a diatomic gas with reactions of dissociation and
recombination through a transition state. Boltzmann-type equations have been derived in
the frame of a probabilistic formulation. Though they are quite awkward at first glance,
some exact significant results on collision invariants and macroscopic conservation equations
can be achieved even without an explicit knowledge of the collision kernels, only by virtue
of their axiomatic properties. In addition, the definition of transition state itself suggests a
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spontaneous asymptotic limit (the stationary-state approximation) in which it is possible to
evaluate approximate collision equilibria, that turn out to be Maxwellian distributions for both
atoms and molecules. The relevant Euler-type equations provide a closed approximate set of
partial differential equations for six unknown macroscopic fields (atomic density, molecular
density, drift velocity and temperature) governing the fluid-dynamic evolution of the system.
We have also presented some preliminary numerical results for the simple space homogeneous
problem in a thermal bath. They show the typical trends which are expected from a physical
point of view, and whose theoretical investigation is in progress: relaxation to equilibrium
from any given initial condition, and reduction to the fluid-dynamic regime when the smallness
parameter (mean lifetime of the transition state) tends to zero.
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Appendix A

In (D1), let (v′,w′) and (v◦, v•,w) denote the velocity strings before and after collision. They
are bound by momentum and energy conservation

2v′ + pw′ = v◦ + v• + pw

2v′2 − 2Q/m + pw′2 = v2
◦ + v2

• + pw2.
(A1)

We shall resort to the ‘scattering’ kernels �11p
2p (v′,w′ → v◦, v•,w), symmetric with respect

to the pair (v◦, v•), with the obvious indistinguishability requirements and �
p11
p2 (v′,w′ →

v,w◦,w•) = �
11p
2p (w′, v′ → w◦,w•, v). It is worth introducing the integrated probability

distributions

�
1,d
2p (v

′,w′ → v) =
∫ ∫

�
11p
2p (v′,w′ → v, v◦,w) dv◦ dw

�
p,d

p2 (v
′,w′ → v) =

∫ ∫
�

p11
p2 (v′,w′ → v,w◦,w•) dw◦ dw•

(A2)

which satisfy by definition the first of (5) and �
1,d
21 (v

′,w′ → v) = �
1,d
12 (w

′, v′ → v).
The other conservation properties in (5) follow from integration of equation (A1) after
multiplication by �

11p
2p .

Analogously, one can define for (D2)

�
1,d
3p (v

′, E; w′ → v) =
∫ ∫

�
11p
3p (v′, E; w′ → v, v◦,w) dv◦ dw

�
p,d

p3 (v
′; w′, E → v) =

∫ ∫
�

p11
p3 (v′; w′, E → v,w◦,w•) dw◦ dw•

(A3)

and equation (6) follows in the same manner.

Appendix B

Chemical collision integrals in the kinetic equations (8) read as

J1 = 3
∫ ∫

gd12(|v′ − w′|)�1,d
12 (v

′,w′ → v)f1(v
′)f2(w

′) dv′ dw′



Kinetic theory of reactions in a diatomic gas 8831

+3
∫ ∫ ∫

gd13(|v′ − w′|, E)�1,d
13 (v

′; w′, E → v)f1(v
′)ϕ3(w

′, E) dE dv′ dw′

+2
∫ ∫ ∫

gd32(|v′ − w′|, E)�1,d
32 (v

′, E; w′ → v)ϕ3(v
′, E)f2(w

′) dE dv′ dw′

+2
∫ ∫

gd22(|v′ − w′|)�1,d
22 (v

′,w′ → v)f2(v
′)f2(w

′) dv′ dw′

+
∫ ∫ ∫

gi13(|v′ − w′|, E)�1,i
13 (v

′; w′, E → v)f1(v
′)ϕ3(w

′, E) dE dv′ dw′

−2f1(v)

∫
gr11(|v − w|)f1(w) dw

−f1(v)

∫ ∫
gd13(|v − w|, E)ϕ3(w, E) dE dw

−f1(v)

∫
gd12(|v − w|)f2(w) dw

−f1(v)

∫ ∫
gi13(|v − w|, E)ϕ3(w, E) dE dw

(B1)

J2 =
∫ ∫ ∫

gd23(|v′ − w′|, E)�2,d
23 (v

′; w′, E → v)f2(v
′)ϕ3(w

′, E) dE dv′ dw′

+
∫ ∫

gd22(|v′ − w′|)�2,d
22 (v

′,w′ → v)f2(v
′)f2(w

′) dv′ dw′

+
∫ ∫ ∫

gi31(|v′ − w′|, E)�2,i
31 (v

′, E; w′ → v)ϕ3(v
′, E)f1(w

′) dE dv′ dw′

+2
∫ ∫ ∫

gi23(|v′ − w′|, E)�2,i
23 (v

′; w′, E → v)f2(v
′)ϕ3(w

′, E) dE dv′ dw′

−f2(v)

∫
gd21(|v − w|)f1(w) dw − 2f2(v)

∫
gd22(|v − w|)f2(w) dw

−f2(v)

∫ ∫
[gd23(|v − w|, E) + gi23(|v − w|, E)]ϕ3(w, E) dE dw

=
∫ ∫

gr11(|v′ − w′|)�3,r
11 (v

′,w′ → v, E)f1(v
′)f1(w

′) dv′ dw′

−ϕ3(v, E)

∫
f1(w)[gd31(|v − w|, E) + gi31(|v − w|, E)] dw

−ϕ3(v, E)

∫
f2(w)[gd32(|v − w|, E) + gi32(|v − w|, E)] dw. (B2)

Appendix C

Mass density and drift velocity in (11) are defined by

ρ = m[n1 + 2(n2 + n3)]

ρu = m[n1u1 + 2(n2u2 + n3u3)]
(C1)

with

n� =
∫

f�(v) dv u� = (1/n�)
∫

f�(v)v dv � = 1, 2, 3. (C2)
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The pressure tensor in (12) is

P =
3∑

�=1

m�

∫
(v − u) ⊗ (v − u)f�(v) dv =

3∑
�=1

P�. (C3)

Energy densities and heat fluxes in (13) read

Eth = (3/2)nKT = (1/2)I : P n =
3∑

�=1

n�

Eint =
∫

[M31(v) − Qf2(v)] dv

(C4)

and

qth = (1/2)
3∑

�=1

m�

∫
(v − u)2(v − u)f�(v) dv

qint =
∫
(v − u)[M31(v) − Qf2(v)] dv

(C5)

respectively, where K is the Boltzmann constant.

Appendix D

The source terms in (16) are, respectively,

S1 = 2Gd
12 + 2Gd

13 + 2Gd
22 + 2Gd

23 − 2Gr
11

S2 = Gi
13 + Gi

23 − Gd
12 − Gd

22

S3 = Gr
11 − Gd

13 − Gd
23 − Gi

13 − Gi
23

(D1)

with

Gα
k� =

∫ ∫
gαk�(|v − w|)fk(v)f�(w) dv dw � �= 3 (D2)

and

Gα
k3 =

∫ ∫ ∫
gαk3(|v − w|, E)fk(v)ϕ3(w, E) dv dw dE. (D3)

The source term in the energy equation (17) turns out to be

Sth = QS2 + Kt
13 + Kt

23 − Kr
11 (D4)

with

Kr
11 = (m/4)

∫ ∫
(v − w)2gr11(|v − w|)f1(v)f1(w) dv dw

Kt
�3 =

∫ ∫ ∫
Egt�3(|v − w|, E)f�(v)ϕ3(w, E) dv dw dE

(D5)

(gt�3 = gd�3 + gi�3).
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